An EEG Examination of Early Visual Processing in Cochlear Implant Using Children

Brett M. Bormann^{1,2}, Sharon Coffey-Corina¹, Elizabeth Pierotti^{1,3}, Lee M. Miller^{1,2,4,5}, David P. Corina^{1,2,3,6}

Center for Mind and Brain¹, Neuroscience Graduate Group², Department of Psychology³, Department of Otolaryngology | Head and Neck Surgery⁴, Department of Neurobiology, Physiology, and Behavior⁵, Department of Linguistics⁶ – University Of California, Davis, CA

INTRODUCTION

- Auditory deprivation at early ages is believed to influence primary sensory processing and some higher-level cognitive domains, such as attention and learning.¹
- A possible explanation is cross-modality plasticity (CMP), which is the reallocation of neural resources of deprived sensory systems by intact sensory systems
- We aim to identify evidence of CMP by comparing the visual evoked potentials (VEP) of **Cochlear Implant (CI)** using children and age matched typically developing (TD) children.

Figure 1.a) A subject participating in the paradigm

SUBJECTS

Cl using Subjects:

- n= 28 (20 males, 8 females)
- Mean age= 74 months
- Age Range: 46-128 months
- Implanted < 31 months

TD Controls

- n = 28 (12 males, 16 females)
- Mean age = 77 months
- Age Range: 31-122 months

(F7) (F3) (F2) (F4) (F8)

 $\begin{array}{c} (A_1) \\ (-\overrightarrow{13} - (\overrightarrow{3} - (\overrightarrow{3} - (\overrightarrow{3} - (\overrightarrow{14} - (\overrightarrow{14}$

Ϋ́Τ5 (P3 (P2 (P4 (T6))

Figure 3.a) 19- electrode map with

O1 and O2 sites highlighted.

to visual stimuli onset

Figure 1.b) CI user participating in a pilot version of the paradigm

Figure 4.a) hemisphere effect

01

15 -

-100

- peak amplitudes
- electrode sites.

Typical Developing

Figure 5.a) Symmetrical response of TD subjects

MATERIALS & METHODS

- This study uses a novel passive electroencephalogram (EEG) paradigm that rapidly and reliably collects the neural activity along visual and auditory pathways of the participants.²
- Visual stimuli: center cartoon with two peripheral flickering checkerboard rings.
- EEG recorded with a **BioSemi Active Two** System.
- 19 cap electrodes, 2 mastoid references

Figure 2) Example of the paradigm's visual stimuli, with a central cartoon and two radial checkerboard rings in the peripheral. s

To learn more about our auditory and concurrent auditory + visual findings of this project, check out Corina et al. 2022.³

• The larger right occipital P1 amplitude could be a reflection of enhanced visual

engagement to/or orientation of visual

FUTURE DIRECTIONS

Evaluate if observed adaptations are are due to intra-modal or cross-modal Examine the influence of

concurrent auditory and visual stimuli on VEP morphology Evaluate the visual response of the flickering stimuli in the

ACKNOWLEDGEMENTS

children, families, and staff who participated in this research along with the CCHAT Center, Sacramento, CA; Weingarten Children's Center, Redwood City, CA; and the Hearing, Speech and Deaf Center, Seattle, WA. Kristina Backer PhD, Laurel Lawyer PhD, Todd LaMarr, and Tristan Schaefer for their support with data collection and analysis. Finally, a thanks to Daniel Comstock PhD and Kelsey Mankel PhD for their

https://millerlab.faculty.ucdavis.edu/