An EEG Examination of Early Visual Processing in Cochlear Implant Using Children

INTRODUCTION
- Auditory deprivation at early ages is believed to influence primary sensory processing and some higher-level cognitive domains, such as attention and learning.
- A possible explanation is cross-modality plasticity (CMP), which is the reallocation of neural resources of deprived sensory systems by intact sensory systems.
- We aim to identify evidence of CMP by comparing the visual evoked potentials (VEP) of Cochlear Implant (CI) using children and age-matched typically developing (TD) children.

SUBJECTS
- CI using Subjects:
 - n = 28 (20 males, 8 females)
 - Mean age = 74 months
 - Age Range: 46-128 months
 - Implanted < 31 months
- TD Controls:
 - n = 28 (12 males, 16 females)
 - Mean age = 77 months
 - Age Range: 31-122 months

MATERIALS & METHODS
- This study uses a novel passive electroencephalogram (EEG) paradigm that rapidly and reliably collects the neural activity along visual and auditory pathways of the participants.
- Visual stimuli: center cartoon with two peripheral flickering checkerboard rings. EEG recorded with a BioSemi Active Two System.
- 19 cap electrodes, 2 mastoid references.

RESULTS
- Both groups exhibited visual evoked potentials (VEP) at both occipital electrode sites in response to visual stimuli onset.
 - First positive peak (P1) between 100-200 msec
 - First negative peak (N1) between 200-300 msec

FUTURE DIRECTIONS
- Evaluate if observed adaptations are due to intra-modal or cross-modal plasticity.
- Examine the influence of concurrent auditory and visual stimuli on VEP morphology.
- Evaluate the visual response of the flickering stimuli in the frequency domain.

REFERENCES

ACKNOWLEDGEMENTS
This research was supported by the National Institute of Health Grant NICHD R01DC014767 awarded to David P. Corina. The authors would like to thank the children, families, and staff who participated in this research along with the ECMH Center, Sacramento, CA, Weigard Children’s Center, Redwood City, CA, and the Hearing, Speech and Deaf Center, Seattle, WA. Kristina Becker PhD, Laurel Lawyer PhD, Todd LaMarr, and Tristan Schaefer for their support with data collection and analysis. Finally, a thanks to Daniel Comstock PhD and Kelley Marley PhD for their mentorship and support.

Corina Lab
Contact US
Speech Neurorehabilitation and Cybernetics (Miller)
Lab
https://millerlab.faculty.ucdavis.edu